NOVAS ABORDAGENS EXPERIMENTAIS PARA O COMBATE DE INFECÇÕES CAUSADAS POR STAPHYLOCOCCUS AUREUS.
Resumo
Staphylococcus aureus tem sido destacado devido sua capacidade de expressar uma variedade de fatores de virulência e adquirir resistência aos agentes antimicrobianos, resultando em um largo espectro de doenças que são cada vez mais difíceis de serem tratadas. Além disso, um número cada vez maior de linhagens de S. aureus tem demonstrado resistência aos agentes antimicrobianos; por esta razão, S. aureus resistente à meticilina (MRSA) e S. aureus multirresistente (MDRSA) têm sido reconhecidos como as principais causas de infecções hospitalares. O objetivo deste trabalho foi apresentar conceitos relacionados às estratégias inovadoras desenvolvidas para combater infecções causadas por S. aureus. A obtenção dos dados bibliográficos foi realizada através da pesquisa em bancos de dados (Google scholar, NCBI - National Center for Biotechnology Information, PubMed e Scielo - Scientific Electronic Library Online). Novas estratégias para o combate de infecções causadas por S. aureus estão sendo desenvolvidas, com ênfase na (i) redução da resistência a antibióticos, (ii) inibição de fatores de virulência do patógeno (produção de coagulases, biofilme, toxinas e/ou estafiloxantina), (iii) ou no aumento da resposta imune do hospedeiro. O estudo mostrou que o desenvolvimento e implantação de novas terapias antivirulência e imunomoduladoras podem resultar no descobrimento e aplicação de novos compostos. Desta forma, o presente trabalho poderá contribuir como fonte de informação para estudos posteriores de conhecimento, prevenção e controle de infecções causadas por S. aureus.
Texto completo:
PDFReferências
Rodríguez-Rojas, A. et al. Antibiotics and antibiotic resistance: a bitter fight against evolution. International Journal of Medical Microbiology, v. 303, n. 6, p. 293-297, 2013.
Lorian V. Medical relevance of low concentrations of antibiotics. J Antimicrob Chemother 1993; 31:137-48.
Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RL. Manual of clinical microbiology. 6th ed. Washington: American Society for Microbiology; 1995.
Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36(6):697–705.
Mark C. Enright, M., Robinson, A.; Randle, G.; Feil, E.; Grundmann, H.; Spratt, B. The evolutionary history of methicillin-resistat Staphylococcus aureus (MRSA). PNAS, v. 99, p. 7687-7698. 2002.
Oliveira DC, Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 46: 2155-2161, 2002.
Kotsaki A., Giamarellos-Bourboulis EJ. Emerging drugs for the treatment of sepsis. Expert opinion on emerging drugs, v. 17, n. 3, p. 379-391, 2012.
Peetermans M., Verhamme P., Vanassche T. Coagulase Activity by Staphylococcus aureus: A Potential Target for Therapy?. In: Seminars in thrombosis and hemostasis. 2015.
Rasko DA., Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nature Reviews Drug Discovery 9, 117-128. 2010.
Maeda T. et al. Purification and characterization of a serine protease secreted by Brevibacillus sp. KH3 for reducing waste activated sludge and biofilm formation. Bioresource Technology. V. 102, Issue 22, p 10650–10656. 2011.
Silva LN. et al. Plant Natural Products Targeting Bacterial Virulence Factors. Chemical Reviews, v. 116, n. 16, p. 9162-9236, 2016
Oikonomopoulou K. et al. Interactions between coagulation and complement—their role in inflammation. In: Seminars in immunopathology. Springer-Verlag, p. 151-165, 2012.
Cheng AG. et al. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. The FASEB Journal, v. 23, n. 10, p. 3393-3404, 2009.
Panizzi P. et al. Fibrinogen substrate recognition by staphylocoagulase•(pro) thrombin complexes. Journal of Biological Chemistry, v. 281, n. 2, p. 1179-1187, 2006.
Friedrich R. et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature, v. 425, n. 6957, p. 535-539, 2002.
Tager M., Drummond MC. Staphylocoagulase. Annals of the New York Academy of Sciences, v. 128, n. 1, p. 92–111. 1965.
Hair, PS. et al. Clumping factor A interaction with complement factor I increases C3b cleavage on the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis. Infection and immunity, v. 78, n. 4, p. 1717-1727, 2010.
Van Ryn, J. et al. The discovery of dabigatran etexilate. Frontiers in pharmacology, v. 4. 2013.
Vanassche, T. et al. Dabigatran inhibits Staphylococcus aureus coagulase activity. Journal of clinical microbiology, v. 48, n. 11, p. 4248-4250, 2010.
Vanassche, T. et al. Inhibition of staphylothrombin by dabigatran reduces Staphylococcus aureus virulence. Journal of Thrombosis and Haemostasis, v. 9, n. 12, p. 2436-2446, 2011.
Mcadow, M. et al. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog, v. 7, n. 10, p. e1002307-e1002307, 2011.
Lin, MH. et al. Involvement of Iron in Biofilm Formation by Staphylococcus aureus. PLoS ONE 7:e34388. 2012.
Saising, J. et al. Inhibition of staphylococcal biofilm-related gene transcription by rhodomyrtone, a new antibacterial agent. Annals of Microbiology, v. 65, n. 2, p. 659-665, 2015.
Von Salm et al. Darwinolide, a New Diterpene Scaffold That Inhibits Methicillin-Resistant Staphylococcus aureus Biofilm from the Antarctic Sponge Dendrilla membranosa. Org. Lett. 18, 11, 2596-2599, 2016
Murray, D. et al. Microbiologia Médica. Elsevier Editora LTDA. p. 176-179. 2014.
Chih-Wei L., Yiu-Kay L., Yu-Tsueng L. et al. Staphylococcus aureus Hijacks a skin commensal to intensify its virulence: immunization targeting β-hemolysin and camp factor. The Journal of Investigative Dermatology, 131:401-409. 2011.
Holt DC. et al. A Very Early-Branching Staphylococcus aureus Lineage Lacking the Carotenoid Pigment Staphyloxanthin. Genome Biology and Evolution, 3 881-895. 2011.
Lee JH. et al. Flavone reduces the production of virulence factors, staphyloxanthin and α-hemolysin, in Staphylococcus aureus. Current microbiology, 65(6), 726-732, 2012.
Lee JH. et al. Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Applied microbiology and biotechnology, v. 97, n. 10, p. 4543-4552, 2013.
Bolla JM. et al. Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Letters, v. 585, p. 1682-1690, 2011.
Hemaiswarya S., Kruthiventi, AK., Doble M. Synergism between natural products and antibiotics against infectious diseases. V. 15, P 639–652. 2008.
Hancock REW., Nijnik A., Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nature Reviews Microbiology 10, 243-254. 2012.
Nijnik A. Immunomodulatory approaches for prevention and treatment of infectious diseases. Current Opinion in Microbiology. V 16, P 590–595. 2013.
Naglik JR., Challacombe J., Hube B. Candida albicans secreted aspartil proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev., Washington, v. 67, n. 3, p. 400-428, 2003.
Da Silva LCN. et al. Immunomodulatory effects of pCramoll and rCramoll on peritoneal exudate cells (PECs) infected and non-infected with Staphylococcus aureus. International journal of biological macromolecules, v. 72, p. 848-854, 2015.
Jakobsen H. et al. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response. PLoS One, 2013.
Kong C. et al. Discovery of potential anti-infectives against Staphylococcus aureus using a Caenorhabditis elegans infection model. BMC complementary and alternative medicine, v. 14, n. 1, p. 4, 2014.
Kaletta T., HENGARTNER MO. Finding function in novel targets: C. elegans as a model organism. Nature Reviews Drug Discovery, v. 5, n. 5, p. 387-399, 2006.
O'reilly LP. et al. C. elegans in high-throughput drug discovery. Advanced Drug Delivery Reviews, v. 69, p. 247-253, 2014.
DOI: https://doi.org/10.24863/rib.v10i1.197
Apontamentos
- Não há apontamentos.